Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Sci Transl Med ; 15(723): eadd4897, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37992152

RESUMO

Deficiency in the adipose-derived hormone leptin or leptin receptor signaling causes class 3 obesity in individuals with genetic loss-of-function mutations in leptin or its receptor LEPR and metabolic and liver disease in individuals with hypoleptinemia secondary to lipoatrophy such as in individuals with generalized lipodystrophy. Therapies that restore leptin-LEPR signaling may resolve these metabolic sequelae. We developed a fully human monoclonal antibody (mAb), REGN4461 (mibavademab), that activates the human LEPR in the absence or presence of leptin. In obese leptin knockout mice, REGN4461 normalized body weight, food intake, blood glucose, and insulin sensitivity. In a mouse model of generalized lipodystrophy, REGN4461 alleviated hyperphagia, hyperglycemia, insulin resistance, dyslipidemia, and hepatic steatosis. In a phase 1, randomized, double-blind, placebo-controlled two-part study, REGN4461 was well tolerated with an acceptable safety profile. Treatment of individuals with overweight or obesity with REGN4461 decreased body weight over 12 weeks in those with low circulating leptin concentrations (<8 ng/ml) but had no effect on body weight in individuals with higher baseline leptin. Furthermore, compassionate-use treatment of a single patient with atypical partial lipodystrophy and a history of undetectable leptin concentrations associated with neutralizing antibodies to metreleptin was associated with noteable improvements in circulating triglycerides and hepatic steatosis. Collectively, these translational data unveil an agonist LEPR mAb that may provide clinical benefit in disorders associated with relatively low leptin concentrations.


Assuntos
Resistência à Insulina , Lipodistrofia Generalizada Congênita , Animais , Camundongos , Humanos , Leptina/uso terapêutico , Ensaios de Uso Compassivo , Receptores para Leptina/metabolismo , Lipodistrofia Generalizada Congênita/tratamento farmacológico , Obesidade/tratamento farmacológico , Anticorpos/uso terapêutico , Peso Corporal
2.
Commun Biol ; 5(1): 779, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918471

RESUMO

Mutations in HNF1A cause Maturity Onset Diabetes of the Young (HNF1A-MODY). To understand mechanisms of ß-cell dysfunction, we generated stem cell-derived pancreatic endocrine cells with hypomorphic mutations in HNF1A. HNF1A-deficient ß-cells display impaired basal and glucose stimulated-insulin secretion, reduced intracellular calcium levels in association with a reduction in CACNA1A expression, and accumulation of abnormal insulin granules in association with SYT13 down-regulation. Knockout of CACNA1A and SYT13 reproduce the relevant phenotypes. In HNF1A deficient ß-cells, glibenclamide, a sulfonylurea drug used in the treatment of HNF1A-MODY patients, increases intracellular calcium, and restores insulin secretion. While insulin secretion defects are constitutive in ß-cells null for HNF1A, ß-cells heterozygous for hypomorphic HNF1A (R200Q) mutations lose the ability to secrete insulin gradually; this phenotype is prevented by correction of the mutation. Our studies illuminate the molecular basis for the efficacy of treatment of HNF1A-MODY with sulfonylureas, and suggest promise for the use of cell therapies.


Assuntos
Diabetes Mellitus Tipo 2 , Insulina , Cálcio/metabolismo , Diabetes Mellitus Tipo 2/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Humanos , Insulina/metabolismo , Insulina Regular Humana , Células-Tronco/metabolismo , Sinaptotagminas
3.
Endocrinology ; 162(1)2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33206168

RESUMO

The liver plays a critical role in maintaining ammonia homeostasis. Urea cycle defects, liver injury, or failure and glutamine synthetase (GS) deficiency result in hyperammonemia, serious clinical conditions, and lethality. In this study we used a mouse model with a defect in the urea cycle enzyme ornithine transcarbamylase (Otcspf-ash) to test the hypothesis that glucagon receptor inhibition using a monoclonal blocking antibody will reduce the hyperammonemia and associated lethality induced by a high-protein diet, which exacerbates disease. We found reduced expression of glutaminase, which degrades glutamine and increased expression of GS in livers of Otcspf-ash mice treated with the glucagon receptor blocking antibody. The gene expression changes favor ammonia consumption and were accompanied by increased circulating glutamine levels and diminished hyperammonemia. Otcspf-ash mice treated with the glucagon receptor-blocking antibody gained lean and body mass and had increased survival. These data suggest that glucagon receptor inhibition using a monoclonal antibody could reduce the risk for hyperammonemia and other clinical manifestations of patients suffering from defects in the urea cycle, liver injury, or failure and GS deficiency.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Hiperamonemia/terapia , Doença da Deficiência de Ornitina Carbomoiltransferase/terapia , Receptores de Glucagon/antagonistas & inibidores , Aminoácidos/sangue , Amônia/sangue , Animais , Peso Corporal , Regulação da Expressão Gênica/efeitos dos fármacos , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Glutaminase/genética , Glutaminase/metabolismo , Masculino , Camundongos , Ornitina Carbamoiltransferase/genética , Ornitina Carbamoiltransferase/metabolismo , Doença da Deficiência de Ornitina Carbomoiltransferase/mortalidade
4.
J Lipid Res ; 61(9): 1271-1286, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32646941

RESUMO

Angiopoietin-like protein (ANGPTL)3 regulates plasma lipids by inhibiting LPL and endothelial lipase (EL). ANGPTL3 inactivation lowers LDL-C independently of the classical LDLR-mediated pathway and represents a promising therapeutic approach for individuals with homozygous familial hypercholesterolemia due to LDLR mutations. Yet, how ANGPTL3 regulates LDL-C levels is unknown. Here, we demonstrate in hyperlipidemic humans and mice that ANGPTL3 controls VLDL catabolism upstream of LDL. Using kinetic, lipidomic, and biophysical studies, we show that ANGPTL3 inhibition reduces VLDL-lipid content and size, generating remnant particles that are efficiently removed from the circulation. This suggests that ANGPTL3 inhibition lowers LDL-C by limiting LDL particle production. Mechanistically, we discovered that EL is a key mediator of ANGPTL3's novel pathway. Our experiments revealed that, although dispensable in the presence of LDLR, EL-mediated processing of VLDL becomes critical for LDLR-independent particle clearance. In the absence of EL and LDLR, ANGPTL3 inhibition perturbed VLDL catabolism, promoted accumulation of atypical remnants, and failed to reduce LDL-C. Taken together, we uncover ANGPTL3 at the helm of a novel EL-dependent pathway that lowers LDL-C in the absence of LDLR.


Assuntos
Proteínas Semelhantes a Angiopoietina/metabolismo , LDL-Colesterol/sangue , VLDL-Colesterol/sangue , Proteína 3 Semelhante a Angiopoietina , Animais , Endotélio/metabolismo , Humanos , Camundongos , Receptores de LDL/metabolismo
5.
J Biol Chem ; 295(33): 11529-11541, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32554468

RESUMO

The insulinotropic actions of glucagon-like peptide 1 receptor (GLP-1R) in ß-cells have made it a useful target to manage type 2 diabetes. Metabolic stress reduces ß-cell sensitivity to GLP-1, yet the underlying mechanisms are unknown. We hypothesized that Glp1r expression is heterogeneous among ß-cells and that metabolic stress decreases the number of GLP-1R-positive ß-cells. Here, analyses of publicly available single-cell RNA-Seq sequencing (scRNASeq) data from mouse and human ß-cells indicated that significant populations of ß-cells do not express the Glp1r gene, supporting heterogeneous GLP-1R expression. To check these results, we used complementary approaches employing FACS coupled with quantitative RT-PCR, a validated GLP-1R antibody, and flow cytometry to quantify GLP-1R promoter activity, gene expression, and protein expression in mouse α-, ß-, and δ-cells. Experiments with Glp1r reporter mice and a validated GLP-1R antibody indicated that >90% of the ß-cells are GLP-1R positive, contradicting the findings with the scRNASeq data. α-cells did not express Glp1r mRNA and δ-cells expressed Glp1r mRNA but not protein. We also examined the expression patterns of GLP-1R in mouse models of metabolic stress. Multiparous female mice had significantly decreased ß-cell Glp1r expression, but no reduction in GLP-1R protein levels or GLP-1R-mediated insulin secretion. These findings suggest caution in interpreting the results of scRNASeq for low-abundance transcripts such as the incretin receptors and indicate that GLP-1R is widely expressed in ß-cells, absent in α-cells, and expressed at the mRNA, but not protein, level in δ-cells.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Células Secretoras de Insulina/metabolismo , Animais , Células Cultivadas , Expressão Gênica , Receptor do Peptídeo Semelhante ao Glucagon 1/análise , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Análise de Célula Única
6.
Diabetes ; 69(2): 249-258, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31836692

RESUMO

Lipodystrophies are a group of disorders characterized by absence or loss of adipose tissue and abnormal fat distribution, commonly accompanied by metabolic dysregulation. Although considered rare disorders, their prevalence in the general population is not well understood. We aimed to evaluate the clinical and genetic prevalence of lipodystrophy disorders in a large clinical care cohort. We interrogated the electronic health record (EHR) information of >1.3 million adults from the Geisinger Health System for lipodystrophy diagnostic codes. We estimate a clinical prevalence of disease of 1 in 20,000 individuals. We performed genetic analyses in individuals with available genomic data to identify variants associated with inherited lipodystrophies and examined their EHR for comorbidities associated with lipodystrophy. We identified 16 individuals carrying the p.R482Q pathogenic variant in LMNA associated with Dunnigan familial partial lipodystrophy. Four had a clinical diagnosis of lipodystrophy, whereas the remaining had no documented clinical diagnosis despite having accompanying metabolic abnormalities. We observed a lipodystrophy-associated variant carrier frequency of 1 in 3,082 individuals in our cohort with substantial burden of metabolic dysregulation. We estimate a genetic prevalence of disease of ∼1 in 7,000 in the general population. Partial lipodystrophy is an underdiagnosed condition. and its prevalence, as defined molecularly, is higher than previously reported. Genetically guided stratification of patients with common metabolic disorders, like diabetes and dyslipidemia, is an important step toward precision medicine.


Assuntos
Registros Eletrônicos de Saúde , Lipodistrofia/epidemiologia , Lipodistrofia/genética , Vigilância da População , Adulto , Feminino , Predisposição Genética para Doença , Genômica , Humanos , Masculino , Estados Unidos/epidemiologia
7.
J Lipid Res ; 61(3): 365-375, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31843957

RESUMO

Atherosclerosis-related CVD causes nearly 20 million deaths annually. Most patients are treated after plaques develop, so therapies must regress existing lesions. Current therapies reduce plaque volume, but targeting all apoB-containing lipoproteins with intensive combinations that include alirocumab or evinacumab, monoclonal antibodies against cholesterol-regulating proprotein convertase subtilisin/kexin type 9 and angiopoietin-like protein 3, may provide more benefit. We investigated the effect of such lipid-lowering interventions on atherosclerosis in APOE*3-Leiden.CETP mice, a well-established model for hyperlipidemia. Mice were fed a Western-type diet for 13 weeks and thereafter matched into a baseline group (euthanized at 13 weeks) and five groups that received diet alone (control) or with treatment [atorvastatin; atorvastatin and alirocumab; atorvastatin and evinacumab; or atorvastatin, alirocumab, and evinacumab (triple therapy)] for 25 weeks. We measured effects on cholesterol levels, plaque composition and morphology, monocyte adherence, and macrophage proliferation. All interventions reduced plasma total cholesterol (37% with atorvastatin to 80% with triple treatment; all P < 0.001). Triple treatment decreased non-HDL-C to 1.0 mmol/l (91% difference from control; P < 0.001). Atorvastatin reduced atherosclerosis progression by 28% versus control (P < 0.001); double treatment completely blocked progression and diminished lesion severity. Triple treatment regressed lesion size versus baseline in the thoracic aorta by 50% and the aortic root by 36% (both P < 0.05 vs. baseline), decreased macrophage accumulation through reduced proliferation, and abated lesion severity. Thus, high-intensive cholesterol-lowering triple treatment targeting all apoB-containing lipoproteins regresses atherosclerotic lesion area and improves lesion composition in mice, making it a promising potential approach for treating atherosclerosis.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Anticolesterolemiantes/uso terapêutico , Atorvastatina/uso terapêutico , Placa Aterosclerótica/tratamento farmacológico , Administração Oral , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticolesterolemiantes/administração & dosagem , Atorvastatina/administração & dosagem , Quimioterapia Combinada , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Aterosclerótica/induzido quimicamente , Placa Aterosclerótica/patologia
8.
Nat Genet ; 51(11): 1596-1606, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31676859

RESUMO

A rare loss-of-function allele p.Arg138* in SLC30A8 encoding the zinc transporter 8 (ZnT8), which is enriched in Western Finland, protects against type 2 diabetes (T2D). We recruited relatives of the identified carriers and showed that protection was associated with better insulin secretion due to enhanced glucose responsiveness and proinsulin conversion, particularly when compared with individuals matched for the genotype of a common T2D-risk allele in SLC30A8, p.Arg325. In genome-edited human induced pluripotent stem cell (iPSC)-derived ß-like cells, we establish that the p.Arg138* allele results in reduced SLC30A8 expression due to haploinsufficiency. In human ß cells, loss of SLC30A8 leads to increased glucose responsiveness and reduced KATP channel function similar to isolated islets from carriers of the T2D-protective allele p.Trp325. These data position ZnT8 as an appealing target for treatment aimed at maintaining insulin secretion capacity in T2D.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/prevenção & controle , Glucose/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Transportador 8 de Zinco/metabolismo , Adolescente , Adulto , Idoso , Diabetes Mellitus Tipo 2/patologia , Feminino , Genótipo , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Ilhotas Pancreáticas/patologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Transportador 8 de Zinco/genética
9.
Mol Metab ; 27S: S7-S14, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31500834

RESUMO

BACKGROUND: Human pancreatic ß-cells are heterogeneous. This has been known for a long time and is based on various functional and morphological readouts. ß-Cell heterogeneity could reflect fixed subpopulations with distinct functions. However, recent pseudotime analysis of large-scale RNA sequencing data suggest that human ß-cell subpopulations may rather reflect dynamic interchangeable states characterized by low expression of genes involved in the unfolded protein response (UPR) and low insulin gene expression, low UPR and high insulin expression or high UPR and low insulin expression. SCOPE OF REVIEW: This review discusses findings obtained by single-cell RNA sequencing combined with pseudotime analysis that human ß-cell heterogeneity represents dynamic interchangeable functional states. The physiological significance and potential implications of ß-cell heterogeneity in the development and progression of diabetes is highlighted. MAJOR CONCLUSIONS: The existence of dynamic functional states allow ß-cells to transition between periods of high insulin production and UPR-mediated stress recovery. The recovery state is important since proinsulin is a misfolding-prone protein, making its biosynthesis in the endoplasmic reticulum a stressful event. The transition of ß-cells between dynamic states is likely controlled at multiple levels and influenced by the microenvironment within the pancreatic islets. Disturbances in the ability of the ß-cells to transition between periods of high insulin biosynthesis and UPR-mediated stress recovery may contribute to diabetes development. Diabetes medications that restore the ability of the ß-cells to transition between the functional states should be considered.


Assuntos
Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Células Secretoras de Insulina/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Análise de Sequência de RNA , Resposta a Proteínas não Dobradas
10.
Endocrinology ; 160(5): 979-988, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30938753

RESUMO

Plasma amino acids and their transporters constitute an important part of the feedback loop between the liver and pancreatic α-cell function, and glucagon regulates hepatic amino acid turnover. Disruption of hepatic glucagon receptor action activates the loop and results in high plasma amino acids and hypersecretion of glucagon associated with α-cell hyperplasia. In the present study, we report a technique to rescue implanted human pancreatic islets from the mouse kidney capsule. Using this model, we have demonstrated that expression of the amino acid transporter SLC38A4 increases in α-cells after administration of a glucagon receptor blocking antibody. The increase in SLC38A4 expression and associated α-cell proliferation was dependent on mechanistic target of rapamycin pathway. We confirmed increased α-cell proliferation and expression of SLC38A4 in pancreas sections from patients with glucagon cell hyperplasia and neoplasia (GCHN) with loss-of-function mutations in the glucagon receptor. Collectively, using a technique to rescue implanted human islets from the kidney capsule in mice and pancreas sections from patients with GCHN, we found that expression of SLC38A4 was increased under conditions of disrupted glucagon receptor signaling. These data provide support for the existence of a liver-human α-cell endocrine feedback loop.


Assuntos
Sistema A de Transporte de Aminoácidos/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucagon/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Receptores de Glucagon/metabolismo , Adulto , Sistema A de Transporte de Aminoácidos/genética , Animais , Proliferação de Células/genética , Feminino , Células Secretoras de Glucagon/citologia , Humanos , Hiperplasia/sangue , Hiperplasia/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Receptores de Glucagon/genética , Transdução de Sinais , Transplante Heterólogo
11.
Skelet Muscle ; 9(1): 9, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992050

RESUMO

BACKGROUND: Critical illness myopathy (CIM) is associated with severe skeletal muscle wasting and impaired function in intensive care unit (ICU) patients. The mechanisms underlying CIM remain incompletely understood. To elucidate the biological activities occurring at the transcriptional level in the skeletal muscle of ICU patients with CIM, the gene expression profiles, potential upstream regulators, and enrichment pathways were characterized using RNA sequencing (RNA-seq). We also compared the skeletal muscle gene signatures in ICU patients with CIM and genes perturbed by mechanical loading in one leg of the ICU patients, with an aim of reducing the loss of muscle function. METHODS: RNA-seq was used to assess gene expression changes in tibialis anterior skeletal muscle samples from seven critically ill, immobilized, and mechanically ventilated ICU patients with CIM and matched control subjects. We also examined skeletal muscle gene expression for both legs of six ICU patients with CIM, where one leg was mechanically loaded for 10 h/day for an average of 9 days. RESULTS: In total, 6257 of 17,221 detected genes were differentially expressed (84% upregulated; p < 0.05 and fold change ≥ 1.5) in skeletal muscle from ICU patients with CIM when compared to control subjects. The differentially expressed genes were highly associated with gene changes identified in patients with myopathy, sepsis, long-term inactivity, polymyositis, tumor, and repeat exercise resistance. Upstream regulator analysis revealed that the CIM signature could be a result of the activation of MYOD1, p38 MAPK, or treatment with dexamethasone. Passive mechanical loading only reversed expression of 0.74% of the affected genes (46 of 6257 genes). CONCLUSIONS: RNA-seq analysis revealed that the marked muscle atrophy and weakness observed in ICU patients with CIM were associated with the altered expression of genes involved in muscle contraction, newly identified E3 ligases, autophagy and calpain systems, apoptosis, and chaperone expression. In addition, MYOD1, p38 MAPK, and dexamethasone were identified as potential upstream regulators of skeletal muscle gene expression in ICU patients with CIM. Mechanical loading only marginally affected the skeletal muscle transcriptome profiling of ICU patients diagnosed with CIM.


Assuntos
Apoptose , Autofagia , Chaperonas Moleculares/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Estado Terminal , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Chaperonas Moleculares/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Debilidade Muscular/genética , Debilidade Muscular/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Doenças Musculares/etiologia , Análise de Sequência de RNA , Transcriptoma , Ubiquitina-Proteína Ligases/genética
12.
Endocr Rev ; 40(5): 1353-1366, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30920583

RESUMO

Both type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD) strongly associate with increasing body mass index, and together these metabolic diseases affect millions of individuals. In patients with T2D, increased secretion of glucagon (hyperglucagonemia) contributes to diabetic hyperglycemia as proven by the significant lowering of fasting plasma glucose levels following glucagon receptor antagonist administration. Emerging data now indicate that the elevated plasma concentrations of glucagon may also be associated with hepatic steatosis and not necessarily with the presence or absence of T2D. Thus, fatty liver disease, most often secondary to overeating, may result in impaired amino acid turnover, leading to increased plasma concentrations of certain glucagonotropic amino acids (e.g., alanine). This, in turn, causes increased glucagon secretion that may help to restore amino acid turnover and ureagenesis, but it may eventually also lead to increased hepatic glucose production, a hallmark of T2D. Early experimental findings support the hypothesis that hepatic steatosis impairs glucagon's actions on amino acid turnover and ureagenesis. Hepatic steatosis also impairs hepatic insulin sensitivity and clearance that, together with hyperglycemia and hyperaminoacidemia, lead to peripheral hyperinsulinemia; systemic hyperinsulinemia may itself contribute to worsen peripheral insulin resistance. Additionally, obesity is accompanied by an impaired incretin effect, causing meal-related glucose intolerance. Lipid-induced impairment of hepatic sensitivity, not only to insulin but potentially also to glucagon, resulting in both hyperinsulinemia and hyperglucagonemia, may therefore contribute to the development of T2D at least in a subset of individuals with NAFLD.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucagon/metabolismo , Fígado/metabolismo , Aminoácidos/metabolismo , Animais , Diabetes Mellitus Tipo 2/fisiopatologia , Células Secretoras de Glucagon/fisiologia , Glucose/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina , Fígado/fisiologia
13.
Circ Res ; 124(1): 38-51, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30582457

RESUMO

RATIONALE: Glucagon is a key hormone that regulates the adaptive metabolic responses to fasting. In addition to maintaining glucose homeostasis, glucagon participates in the regulation of cholesterol metabolism; however, the molecular pathways underlying this effect are incompletely understood. OBJECTIVE: We sought to determine the role of hepatic Gcgr (glucagon receptor) signaling in plasma cholesterol regulation and identify its underlying molecular mechanisms. METHODS AND RESULTS: We show that Gcgr signaling plays an essential role in LDL-C (low-density lipoprotein cholesterol) homeostasis through regulating the PCSK9 (proprotein convertase subtilisin/kexin type 9) levels. Silencing of hepatic Gcgr or inhibition of glucagon action increased hepatic and plasma PCSK9 and resulted in lower LDLR (LDL receptor) protein and increased plasma LDL-C. Conversely, treatment of wild-type (WT) mice with glucagon lowered LDL-C levels, whereas this response was abrogated in Pcsk9-/- and Ldlr-/- mice. Our gain- and loss-of-function studies identified Epac2 (exchange protein activated by cAMP-2) and Rap1 (Ras-related protein-1) as the downstream mediators of glucagon's action on PCSK9 homeostasis. Moreover, mechanistic studies revealed that glucagon affected the half-life of PCSK9 protein without changing the level of its mRNA, indicating that Gcgr signaling regulates PCSK9 degradation. CONCLUSIONS: These findings provide novel insights into the molecular interplay between hepatic glucagon signaling and lipid metabolism and describe a new posttranscriptional mechanism of PCSK9 regulation.


Assuntos
LDL-Colesterol/sangue , Metabolismo Energético , Glucagon/metabolismo , Fígado/metabolismo , Pró-Proteína Convertase 9/metabolismo , Animais , Linhagem Celular , Estabilidade Enzimática , Glucagon/deficiência , Glucagon/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Meia-Vida , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pró-Proteína Convertase 9/deficiência , Pró-Proteína Convertase 9/genética , Proteólise , Receptores de Glucagon/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transdução de Sinais , Proteínas rap1 de Ligação ao GTP/metabolismo
15.
J Med Primatol ; 48(1): 10-21, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30357856

RESUMO

BACKGROUND: Management of diabetes remains a major health and economic challenge, demanding test systems in which to develop new therapies. These studies assessed different methodologies for determining glucose tolerance in green monkeys. METHODS: Twenty-eight African green monkeys between 4 and 24 years old underwent single or repeat intravenous glucose tolerance testing (IVGTT), oral glucose tolerance testing (OGTT), and/or graded glucose infusion testing. RESULTS: Geriatric monkeys exhibited glucose intolerance with impaired glucose-stimulated insulin secretion following IVGTT. Repeat IVGTT and OGTT assessments were inconsistent. Monkeys with low glucose-stimulated insulin secretion after graded glucose infusion exhibited elevated blood glucose levels. CONCLUSION: IVGTT and graded glucose infusion protocols revealed differences in glucose tolerance among green monkeys at single time points, including age-dependent differences suggestive of shifts in pancreatic beta-cell functional capacity, but care should be applied to study design and the interpretation of data in the setting of longitudinal studies.


Assuntos
Chlorocebus aethiops/fisiologia , Teste de Tolerância a Glucose/estatística & dados numéricos , Secreção de Insulina , Animais , Chlorocebus aethiops/sangue , Feminino , Masculino
16.
Endocrinology ; 159(12): 4023-4032, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30380031

RESUMO

The ghrelin-producing ε cell represents the fifth endocrine cell type in human pancreatic islets. The abundance of ε cells in adult pancreas is extremely low, which has hampered the investigation on the molecular pathways regulating the development and the function of this cell type. In this study, we explored the molecular features defining the function of pancreatic ε cells isolated from adult nondiabetic donors using single-cell RNA sequencing technology. We focus on transcription factors, cell surface receptors, and genes involved in metabolic pathways that contribute to regulation of cellular function. Furthermore, the genes that separate ε cells from the other islet endocrine cell types are presented. This study expands prior knowledge about the genes important for ε cell functioning during development and provides a resource to interrogate the transcriptome of this rare human islet cell type.


Assuntos
Grelina/metabolismo , Pâncreas/citologia , Pâncreas/metabolismo , Transcriptoma , Adulto , Contagem de Células , Separação Celular , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Análise em Microsséries , Transdução de Sinais/genética
17.
Nat Rev Endocrinol ; 14(12): 694-704, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30310153

RESUMO

Findings from the past 10 years have placed the glucagon-secreting pancreatic α-cell centre stage in the development of diabetes mellitus, a disease affecting almost one in every ten adults worldwide. Glucagon secretion is reduced in patients with type 1 diabetes mellitus, increasing the risk of insulin-induced hypoglycaemia, but is enhanced in type 2 diabetes mellitus, exacerbating the effects of diminished insulin release and action on blood levels of glucose. A better understanding of the mechanisms underlying these changes is therefore an important goal. RNA sequencing reveals that, despite their opposing roles in the control of blood levels of glucose, α-cells and ß-cells have remarkably similar patterns of gene expression. This similarity might explain the fairly facile interconversion between these cells and the ability of the α-cell compartment to serve as a source of new ß-cells in models of extreme ß-cell loss that mimic type 1 diabetes mellitus. Emerging data suggest that GABA might facilitate this interconversion, whereas the amino acid glutamine serves as a liver-derived factor to promote α-cell replication and maintenance of α-cell mass. Here, we survey these developments and their therapeutic implications for patients with diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Humanos , Insulina/metabolismo , Masculino , Papel (figurativo) , Sensibilidade e Especificidade
18.
Proc Natl Acad Sci U S A ; 115(32): E7642-E7649, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30038024

RESUMO

SLC30A8 encodes a zinc transporter that is primarily expressed in the pancreatic islets of Langerhans. In ß-cells it transports zinc into insulin-containing secretory granules. Loss-of-function (LOF) mutations in SLC30A8 protect against type 2 diabetes in humans. In this study, we generated a knockin mouse model carrying one of the most common human LOF mutations for SLC30A8, R138X. The R138X mice had normal body weight, glucose tolerance, and pancreatic ß-cell mass. Interestingly, in hyperglycemic conditions induced by the insulin receptor antagonist S961, the R138X mice showed a 50% increase in insulin secretion. This effect was not associated with enhanced ß-cell proliferation or mass. Our data suggest that the SLC30A8 R138X LOF mutation may exert beneficial effects on glucose metabolism by increasing the capacity of ß-cells to secrete insulin under hyperglycemic conditions.


Assuntos
Diabetes Mellitus Tipo 2/genética , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Transportador 8 de Zinco/genética , Alelos , Animais , Glicemia , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Humanos , Hiperglicemia/sangue , Hiperglicemia/induzido quimicamente , Hiperglicemia/metabolismo , Secreção de Insulina , Mutação com Perda de Função , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeos/farmacologia , Receptor de Insulina/antagonistas & inibidores , Receptor de Insulina/metabolismo , Transportador 8 de Zinco/metabolismo
19.
Endocrinology ; 159(9): 3177-3186, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010845

RESUMO

Pancreatic α cells proliferate at a low rate, and little is known about the control of this process. Here we report the characterization of human α cells by large-scale, single-cell RNA sequencing coupled with pseudotime ordering. We identified two large subpopulations and a smaller cluster of proliferating α cells with increased expression of genes involved in cell-cycle regulation. The proliferating α cells were differentiated, had normal levels of GCG expression, and showed no signs of cellular stress. Proliferating α cells were detected in both the G1S and G2M phases of the cell cycle. Human α cells proliferate at a fivefold higher rate than human ß cells and express lower levels of the cell-cycle inhibitors CDKN1A and CDKN1C. Collectively, this study provides the gene signatures of human α cells and the genes involved in their cell division. The lower expression of two cell-cycle inhibitors in human α cells could account for their higher rate of proliferation compared with their insulin-producing counterparts.


Assuntos
Proliferação de Células/genética , Células Secretoras de Glucagon/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma , Adulto , Ciclo Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência de RNA , Análise de Célula Única , Adulto Jovem
20.
Diabetes ; 67(9): 1783-1794, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29950394

RESUMO

Proinsulin is a misfolding-prone protein, making its biosynthesis in the endoplasmic reticulum (ER) a stressful event. Pancreatic ß-cells overcome ER stress by activating the unfolded protein response (UPR) and reducing insulin production. This suggests that ß-cells transition between periods of high insulin biosynthesis and UPR-mediated recovery from cellular stress. We now report the pseudotime ordering of single ß-cells from humans without diabetes detected by large-scale RNA sequencing. We identified major states with 1) low UPR and low insulin gene expression, 2) low UPR and high insulin gene expression, or 3) high UPR and low insulin gene expression. The latter state was enriched for proliferating cells. Stressed human ß-cells do not dedifferentiate and show little propensity for apoptosis. These data suggest that human ß-cells transition between states with high rates of biosynthesis to fulfill the body's insulin requirements to maintain normal blood glucose levels and UPR-mediated recovery from ER stress due to high insulin production.


Assuntos
Estresse do Retículo Endoplasmático , Regulação da Expressão Gênica , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proinsulina/metabolismo , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , Biomarcadores/metabolismo , Proliferação de Células , Células Cultivadas , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Insulina/química , Insulina/genética , Secreção de Insulina , Células Secretoras de Insulina/citologia , Cinética , Família Multigênica , Mapeamento de Nucleotídeos , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal , Proinsulina/química , Proinsulina/genética , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...